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Abstract

A tiling of the Euclidean plane, by regular polygons, is called 2-uniform tiling if it has two
orbits of vertices under the action of its symmetry group. There are 20 distinct 2-uniform tilings
of the plane. Plane being the universal cover of torus and Klein bottle, it is natural to ask about
the exploration of maps on these two surfaces corresponding to the 2-uniform tilings. We call
such maps as doubly semi-equivelar maps. In the present study, we compute and classify (up
to isomorphism) doubly semi-equivelar maps on torus and Klein bottle. This classification of
semi-equivelar maps is useful in classifying a category of symmetrical maps which have two
orbits of vertices, named as 2-uniform maps.

MSC(2010): 52B70, 57M10, 57M20.
Keywords: 2-uniform tilings, torus, Klein bottle, doubly semi-equivelar maps.

1 Introduction

Equivelar and semi-equivelar maps are generalizations of the maps on the surfaces of well known
Platonic solids and Archimedean solids to the closed surfaces other than the 2-sphere, respectively.
A substantial literature is available for such maps, see [1, 2, 3, 4, 5, 6, 7, 8].

Tilings of the plane are a great source of polyhedral maps on the surfaces of torus and Klein
bottle, as the plane is the universal cover of these two surfaces. A tiling of the plane, by regular
polygons, is called a k-uniform tiling if it has k orbits of vertices under its symmetry. The k-uniform
tilings have been completely enumerated for k ≤ 6. There are 11 1-uniform, 20 2-uniform, 61 3-
uniform, 151 4-uniform, 332 5-uniform and 673 6-uniform tilings on the plane. For a detailed study
on such tilings, readers are referred to see [9, 10, 11].

The 11 1-uniform tilings of the plane are also called Archimedean tilings. Out of these, 3 are
regular and 8 are semi-regular tilings. The 3 regular tilings provide equivelar maps of types [36],
[44], [63] and 8 semi-regular tilings provide semi-equivelar maps of types [34, 6], [33, 42], [32, 4, 3, 4],
[3, 4, 6, 4], [3, 6, 3, 6], [3, 122], [4, 6, 12] and [4, 82], on torus and Klein bottle. Altshuler [12] has given
a construction for a map of the type [36] and [63] on the torus. Kurth [13] has enumerated maps of
the types [36], [44] and [63] on the torus. In [2], Datta band Nilakantan classified map of type [36]
and [44] on at most 11 vertices. In continuation of this, Datta and Upadhyay [14] classified these
type of maps for n vertices with 12 ≤ n ≤ 15. In [15], Brehm and Kuhnel have classified these three
types equivelar maps on the torus using a different approach. In [16], Tiwari and Upadhyay have
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classified the 8 types semi-equivelar maps on at most 20 vertices. Recently, Maity and Upadhyay
[17] have presented a way to classify the eight types of semi-equivelar maps on the torus for arbitrary
number of vertices.

Analogues to the Archimedean tilings, here we initiate the theory of maps on torus and Klein
bottle corresponding to the 2-uniform tilings. We call such maps as doubly semi-equivelar map(s)
or briefly DSEM(s). The present work provides a new class of polyhedra which have two classes of
vertices in terms of the arrangement of polygons around the vertices. Polyhedra play an important
role in human life. It has extensive application in ornament designing, architectural designing,
cartography, computer graphics etc., see [18, 19, 20].

This article is organized as follows: In Sec 2, we give basic definitions and notations used in the
present work. In Sec 3, we define doubly semi-equivelar map (DSEM) and describe a methodology
to enumerate a doubly semi-equivelar map on torus and Klein bottle. In Sec 4, we compute and
classify DSEMs on torus and Klein bottle. In Sec 5, we present the results obtained from the
computation and classification. A tabular form of the results is shown in Table 5. In Sec 6, we
present discussions and future scope of the DSEMs followed by some concluding remarks.

2 Basic definitions and notations

For graph theory related terminologies, we refer [21]. A p-cycle, denoted as Cp, is a 2-regular graph
with p vertices. We denote Cp explicitly as Cp(v1, . . . , vp), where the vertex set V (Cp) = {v1, . . . , vp}
and edge set E(Cp) = {v1v2, . . . , vn−1vn, vnv1}.

A surface (closed surface) F is a connected, compact 2-manifold without boundary. A surface F
is either sphere, sphere with g handles (also called orientable surface of genus g, denoted as Sg) or
sphere with g cross caps (also called non-orientable surface of genus g, denoted as Ng). To a surface,
we associate a unique integer called its Euler characteristic χ and is defined as χ(Sg) = 2− 2g and
χ(Ng) = 2− g. The surfaces S1 and N2 of Euler characteristic 0 are called torus and Klein bottle,
respectively.

An embedding of a connected, simple graph G into a surface F is called 2-cell embedding if the
closure of each connected component of F \G is a 2-disk Dp. These components are called faces of
the embedding. The vertices and edges of G are called the vertices and edges of the embedding. A
map (polyhedral) M on a surface F is a 2-cell embedding such that the non-empty intersection of
any two faces is either a vertex or an edge [22]. The face size of a map M is p, if p is the largest
positive integer such that M has a face Dp.

Two maps M1 and M2, with vertex sets V (M1) and V (M2) respectively, are said to be isomorphic
if there is a bijective map f : V (M1) → V (M2) which preserves the incidence of edges and incidence
of faces. An isomorphism from a map M to itself is also called an automorphism. A collection
Aut(M) of all the automorphisms of a map M forms a group under the composition of maps, called
the automorphism group of M . A map M is called vertex-transitive if it has a unique orbit of
vertices under the action of Aut(M).

The face-sequence [7] of a vertex v, denoted as f -seq(v), in a map M is a finite cyclic se-
quence (pn1

1 , . . . , pnk

k ), where p1, . . . , pk ≥ 3 and n1, . . . , nk ≥ 1, such that the face cycle at v is
(Dp1 , . . . (n1times), . . . ,Dpk , . . . (nktimes)). A map is called semi-equivelar of type [pn1

1 , . . . , pnk

k ] if
the face-sequence of each vertex is (pn1

1 , . . . , pnk

k ). A semi-equivelar map of type [pn] is also called
equivelar map.

Let (Dp1 , . . . ,Dpk) be the face cycle at a vertex v in a map M . Let Cpi denote the boundary
cycles of these Dpi . Then the link of v, denoted as lk(v), is a cycle in M consisting of all the vertices
of these Cpi ’s except v and all the edges of these Cpi ’s except which has one end vertex v. If v
is a vertex with lk(v) = Ck(v1, . . . , vk), the face-sequence of lk(v) is a cyclically ordered sequence
(f -seq(v1), . . ., f -seq(vk)).
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Let v be a vertex with the face sequence (pn1
1 , . . . , pnk

k ). The combinatorial curvature of v,

denoted by φ(v), is defined as φ(v) = 1− (
∑k

i=1 ni)/2 + (
∑k

i=1 ni/pi)).

3 Definition of the problem and description of method

Let M be a map with two distinct face-sequences f1 and f2. We say that M is a doubly semi-
equivelar map, in short DSEM, if (i) the sign of φ(v) is same for all v ∈ M (ii) vertices of same type
face-sequence also have links of the same face-sequence up to a cyclic permutation. A doubly semi-
equivelar map M is called 2-uniform if it has 2 orbits of vertices under the action of its automorphism

group. We denote the M of type [f
(f11,...,f1r1)
1 : f

(f21,...,f2r2)
2 ], where f1i or f2j is f1 or f2, for 1 ≤ i ≤ r1

and 1 ≤ j ≤ r2, if vertices of the face-sequence f1 have links of face-sequence (f11, . . . , f1r1) and
vertices of the face-sequence f2 have links of face-sequence (f21, . . . , f2r2) respectively.

There are 20 types of 2-uniform tilings of the plane denoted as: [36 : 33, 42]1, [36 : 33, 42]2,
[36 : 32, 4, 3, 4], [33, 42 : 32, 4, 3, 4]1, [33, 42 : 32, 4, 3, 4]2, [33, 42 : 44]1, [33, 42 : 44]2, [36 : 34, 6]1,
[36 : 34, 6]2, [3

6 : 32, 4, 12], [36 : 32, 62], [34, 6 : 32, 62], [33, 42 : 3, 4, 6, 4]1 , [3
2, 4, 3, 4, 42 : 3, 4, 6, 4],

[32, 62 : 3, 6, 3, 6], [3, 4, 3, 12 : 3, 122], [3, 42, 6 : 3, 4, 6, 4], [3, 42, 6 : 3, 6, 3, 6]1 , [3, 42, 6 : 3, 6, 3, 6]2 ,
[3, 4, 6, 4 : 4, 6, 12], see [11]. Out of these, the first seven types have p-gons, with p ≤ 4, see Fig. 3.

2-uniform tilings of the plane

•• •
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◦ ◦ ◦

◦ ◦

Fig. 3: 2-uniform tilings of types: [36 : 33, 42]1, [36 : 33, 42]2, [36 : 32, 4, 3, 4], [33, 42 : 44]1, [33, 42 : 32, 4, 3, 4]1,

[33, 42 : 32, 4, 3, 4]2, [33, 42 : 44]2 (see from left).
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We classify the DSEMs on torus and Klein bottle corresponding to the above seven tilings. We
abbreviate the types of DSEMs by the same notation as used for the respective tilings, see Table 3.

Table 3: Tabulated list of DSEMs of face-size 4

S No. Abbreviated form DSEM type

1. [36 : 33, 42]1 [(36)((3
6),(33,42),(33,42),(36),(33,42),(33,42)):

(33, 42)((3
6),(36),(33,42),(33,42),(33,42),(33,42),(33,42))]

2. [36 : 33, 42]2 [(36)((3
6),(36),(36),(36),(33,42),(33,42)):

(33, 42)((3
6),(36),(33,42),(33,42),(33,42),(33,42),(33,42))]

3. [36 : 32, 4, 3, 4] [(36)((3
2
,4,3,4),(32,4,3,4),(32,4,3,4),(32,4,3,4),(32,4,3,4),(32,4,3,4)):

(32, 4, 3, 4)((3
6),(32,4,3,4),(32,4,3,4),(32,4,3,4),(32,4,3,4),(32,4,3,4),(32,4,3,4))]

4. [33, 42 : 32, 4, 3, 4]1 [(33, 42)((3
3
,42),(32,4,3,4),(32,4,3,4),(32,4,3,4),(32,4,3,4),(32,4,3,4),(32,4,3,4)):

(32, 4, 3, 4)((3
3
,42),(32,4,3,4),(32,4,3,4),(32,4,3,4),(33,42),(33,42),(32,4,3,4))]

5. [33, 42 : 32, 4, 3, 4]2 [(33, 42)((3
3
,42),(32,4,3,4),(32,4,3,4),(32,4,3,4),(33,42),(33,4,3,4),(33,4,3,4)):

(32, 4, 3, 4)((3
3
,42),(33,42),(33,42),(32,4,3,4),(33,42),(33,42),(32,4,3,4))]

6. [33, 42 : 44]1 [(33, 42)((3
3
,42),(33,42),(33,42),(33,42),(44),(44),(44)):

(44)((3
3
,42),(33,42),(33,42),(44),(33,42),(33,42),(33,42),(44))]

7. [33, 42 : 44]2 [(33, 42)((3
3
,42),(33,42),(33,42),(33,42),(44),(44),(44)):

(44)((3
3
,42),(33,42),(33,42),(44),(44),(44),(44),(44))]
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3.1 Methodology

Each doubly semi-equivelar map, out of the seven types (listed in Table 3), contains two types of
face-sequences among the four types (36), (33, 42), (32, 4, 3, 4) and (44) around the vertices. We
use the following notations frequently to denote a vertex with specific type face-sequence in the
computation. Here lk(v) means link of vertex v.

• The notation lk(v) = C6(a, b, c, d, e, f) means the face-sequence of v is (36), i.e., the triangular
faces [v, b, c], [v, c, d], [v, d, e], [v, e, f ], [v, f, a], [v, b, a] incident at v.

• lk(v) = C7(a, b, [c, d, e , f, g]) means the face-sequence of v is (33, 42), i.e., the triangular faces
[v, a, g], [v, a, b], [v, b, c] and quadrangular faces [v, c, d, e], [v, e, f, g] are incident at v.

• lk(v) = C7(a, [b, c, d], [e, f, g]) means the face-sequence of v is (32, 4, 3, 4), i.e., the triangular
faces [v, a, b], [v, a, g], [v, d, e] and quadrangular faces [v, b, c, d], [v, e, f, g] are incident at v.

• lk(v) = C8(a , b, c, d, e , f,g, h) means the face-sequence of v is (44), i.e., the quadrangular
faces [v, a, b, c], [v, c, d, e], [v, e, f, g] and [v, g, h, a] are incident at v.

Since a doubly semi-equivelar map contains two types of vertices, in terms of face-sequences.
Therefore to distinguish these vertices, we denote vertices of one type face-sequence by n and the
other type by an, for some n ∈ N. We describe a methodology to compute and classify the DSEMs
listed in Table 3. Without loss of generality, we illustrate the methodology for type [36 : 33.42]1.
The same procedure is used for the remaining six types.

Let M be a DSEM of type [36 : 33.42]1 with vertex set V on a surface of Euler characteristic 0
(i.e., on torus or Klein bottle). Let V(36) and V(33,42) denote the set of vertices with face-sequence
type (36) and (33, 42) respectively. Here |V(36)| and |V(33,42)| denote the cardinality of the sets V(36)

and V(33,42) respectively. Then, it is easy to see that the number of triangular faces is 4|V(36)| or
2|V(33,42)|. Thus, if the map exists then 2|V(36)| = |V(33,42)|. Therefore we have V = V(36)∪V(33,42) =
{a1, a2, . . . , a|V(36)|

, 1, 2, . . . , |V(33,42)|} such that 2|V(36)| = |V(33,42)|. Now we use the following steps

to enumerate DSEM M for this V = V(36) ∪ V(33,42).

Steps to enumerate DSEMs of type [36 : 33.42]1:

Step 1:

1. Without loss of generality, let us start with a vertex v1 having face-sequence type (36). Let
lk(a1) = C6(a2, 1, 2, a3, 3, 4).

2. This implies lk(a2) = C6(1, a1, 4, n2, x1, n1) with several choices for the triplet (n1, x1, n2)
in V(33,42) × V(36) × V(33,42) or lk(4) = C7(a1, a2, [n1, n2,n3, n4, 3]) with several choices for
(n1, n2, n3, n4) ∈ V(33,42) × V(33,42) × V(33,42) × V(33,42), see Fig. 3.1.

3. Again among lk(a2) and lk(4), without loss of generality, we proceed with lk(a2) = C6(1, a1, 4,
n2, x1, n1). For each choice of (n1, x1, n2) we have distinct possibility for lk(a2). Out of these
possibilities of lk(a2), we qualify those ones which preserves the face-sequence types of vertices.
The similar procedure may be adopted for lk(4) (if required).

Step 2: We continuously repeat Step 1 until we do not get the links of remaining vertices from V .

Step 3: The computation involves in Step 1 and Step 2 is case by case and exhaustive covering all
possible scenarios.

Step 4: We explore isomorphism between the maps obtained in Step 1 and Step 2, which leads to
the enumeration of DSEMs of type [36 : 33.42]1.
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To show that two maps M1 and M2 are non-isomorphic, we compute the characteristic polyno-
mials p(EG(M1)) and p(EG(M2)) of adjacency matrices associated the edge graphs EG(M1) and
EG(M2) of the maps M1 and M2 respectively. The edge graph of M is a graph EG(M) consisting
of vertices and edges of the map. Clearly if p(EG(M1)) 6= p(EG(M2)), M1 ≇ M2. However if
p(EG(M1)) = p(EG(M2)), we can not say anything.

•• •

◦ ◦ ◦

◦ ◦ ◦

◦ ◦

DSEM type: [36 : 33.42]1

=⇒a1 a2a3

12

3 4

lk(a1) = C6(a2, 1, 2, a3, 3, 4)

• • •

◦◦

◦◦

a2 x1v1

n11

4 n2

lk(a2)

• • •

◦ ◦

◦ ◦

or
4

n1

v2v1

3

n4 n3 n2

lk(4)

• •

◦ ◦ ◦

◦ ◦ ◦

Fig. 3.1: Illustration of the methodology

4 Computation and classification of DSEMs

In this section, we compute and classify the seven types DSEMs (listed in Table 3) using the
methodology given in Sec. 3. For the sake of computation, we consider the number of vertices ≤ 15.

4.1 Computation and classification for type [36: 33, 42]1

Consider the following DSEMs of type [36 : 33, 42]1, in Fig 4.1, on torus and Klein bottle denoted
by Ti(n,2n)[3

6 : 33, 42]1, for i ∈ {1, . . . , 8}, and Ki(n,2n)[3
6 : 33, 42]1, for i ∈ {1, . . . , 6}, respectively.

v2 v1 v5 v2

v3 v4 v6
v3

u3
u1 u2 u3

v2 v1 v5 v2

T1(3,6) [3
6 : 33, 42]1

v5 v2 v1 v5

v3 v4 v6
v3

u3
u1 u2 u3

v2 v1 v5 v2

T2(3,6) [3
6 : 33, 42]1

v2 v5 v1 v2

v3 v4 v6
v3

u3
u1 u2 u3

v2 v1 v5 v2

K1(3,6) [3
6 : 33, 42]1

v4 v3 v5 v1

v1 v2 v6
v4

u2
u1 u3 u2

v4 v3 v5 v1

K2(3,6) [3
6 : 33, 42]1

v7 v2 v1 v5 v7

v3 v4 v6 v8
v3

u3
u1 u2 u4 u3

v2 v1 v5 v7 v2

T3(4,8) [3
6 : 33, 42]1

v5 v7 v2 v1 v5

v3 v4 v6 v8
v3

u3
u1 u2 u4 u3

v2 v1 v5 v7 v2

T4(4,8) [3
6 : 33, 42]1

v7 v5 v1 v2 v7

v3 v4 v6 v8
v3

u3
u1 u2 u4 u3

v2 v1 v5 v7 v2

K3(4,8) [3
6 : 33, 42]1

v5 v1 v2 v7 v5

v3 v4 v6 v8
v3

u3
u1 u2 u4 u3

v2 v1 v5 v7 v2

K4(4,8) [3
6 : 33, 42]1

v2 v1 v5 v8 v3

v3 v4 v6 v7
v2

u3
u1 u2 u4 u3

v2 v1 v5 v8 v3

K5(4,8) [3
6 : 33, 42]1

v2 v1 v5 v7 v2

v3 v4 v6 v8
v3

u3
u1 u2 u4 u3

v2 v1 v5 v7 v2

T5(4,8) [3
6 : 33, 42]1

v5 v10 v7 v2 v1 v5

v3 v4 v6 v9 v8
v3

u3
u1 u2 u4 u5 u3

v2 v1 v5 v10 v7 v2

T6(5,10) [3
6 : 33, 42]1

v1 v5 v10 v7 v2 v1

v3 v4 v6 v9 v8
v3

u3
u1 u2 u4 u5 u3

v2 v1 v5 v10 v7 v2

T7(5,10) [3
6 : 33, 42]1

v2 v1 v5 v10 v8 v3

v3 v4 v6 v9 v7
v2

u3
u1 u2 u4 u5 u3

v2 v1 v5 v10 v8 v3

K6(5,10) [3
6 : 33, 42]1

v5 v1 v2 v7 v10 v5

v3 v4 v6 v9 v8
v3

u3
u1 u2 u4 u5 u3

v2 v1 v5 v10 v7 v2

K7(5,10) [3
6 : 33, 42]1

v2 v1 v5 v10 v7 v2

v3 v4 v6 v9 v8
v3

u3
u1 u2 u4 u5 u3

v2 v1 v5 v10 v7 v2

T8(5,10) [3
6 : 33, 42]1

Fig. 4.1: Doubley semi-equivelar maps on torus and Klein bottle of type [36 : 33, 42]1

Claim 4.1 For the maps above, we have the following:

(a) T1(3,6)[3
6 : 33, 42]1 ≇ T2(3,6)[3

6 : 33, 42]1.

(b) T3(4,8)[3
6 : 33, 42]1 ≇ T4(4,8)[3

6 : 33, 42]1 ≇ T5(4,8)[3
6 : 33, 42]1.

(c) K3(4,8)[3
6 : 33, 42]1 ≇ K4(4,8)[3

6 : 33, 42]1 ≇ K5(4,8)[3
6 : 33, 42]1.
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(d) T6(5,10)[3
6 : 33, 42]1 ≇ T7(5,10)[3

6 : 33, 42]1 ≇ T8(5,10)[3
6 : 33, 42]1.

(e) K6(5,10)[3
6 : 33, 42]1 ≇ K7(5,10)[3

6 : 33, 42]1.

Proof. Let p(EG(M)) denote the characteristic polynomial of adjacency matrix associated with
the edge graph of M . Then the proof follows from the following polynomials:
p(EG(T1(3,6)[3

6 : 33, 42]1)) = x9 − 24x7 − 42x6 + 63x5 + 138x4 − 72x3 − 144x2 + 48x + 32,

p(EG(T2(3,6)[3
6 : 33, 42]1)) = x9 − 24x7 − 36x6 + 45x5 + 48x4 − 21x3 − 18x2 + 3x+ 2,

p(EG(T3(4,8)[3
6 : 33, 42]1)) = x12 − 32x10 − 40x9 + 254x8 + 440x7 − 628x6 − 1400x5 + 105x4 + 1000x3 + 300x2,

p(EG(T4(4,8)[3
6 : 33, 42]1)) = x12−32x10−32x9+254x8+224x7−932x6−448x5+1673x4+96x3−1156x2+160x+192,

p(EG(T5(4,8)[3
6 : 33, 42]1)) = x12−32x10−48x9+254x8+656x7−292x6−2352x5−2167x4+624x3+2044x2+1120x+192,

p(EG(K3(4,8)[3
6 : 33, 42]1)) = x12−31x10−39x9+227x8+377x7−561x6−1129x5+416x4+1283x3+92x2−492x−144,

p(EG(K4(4,8)[3
6 : 33, 42]1)) = x12−32x10−40x9+254x8+440x7−644x6−1400x5+457x4+1640x3+156x2−640x−192,

p(EG(K5(4,8)[3
6 : 33, 42]1)) = x12−32x10−48x9+258x8+640x7−364x6−220x5−1635x4+496x3+684x2−32x−64,

p(EG(T6(5,10)[3
6 : 33, 42]1)) = x15 − 40x13 − 40x12 +515x11 +754x10 − 282x9 − 4940x8 +6790x7 +13430x6 − 668x5 −

15340x4 + 975x3 + 5490x2 + 1755x + 162,

p(EG(T7(5,10)[3
6 : 33, 42]1)) = x15−38x13−51x12+462x11+1033x10−1049x9−5533x8−4681x7+2905x6+6351x5+

2282x4 − 1046x3 − 680x2 + 32x + 48,

p(EG(T8(5,10)[3
6 : 33, 42]1)) = x15 −40x13−60x12+485x11+1374x10−985x9−7910x8−9955x7−1010x6+7623x5+

7030x4 + 2820x3 + 570x2 + 55x + 2,

p(EG(K6(5,10)[3
6 : 33, 42]1)) = x15 − 39x13− 58x12 +462x11 +1309x10 − 916x9− 7455x8 − 9096x7 − 203x6+6562x5 +

3147x4 − 909x3 − 761x2 − 97x− 3,

p(EG(K7(5,10)[3
6 : 33, 42]1)) = x15−40x13−48x12+497x11+1010x10−1973x9−6234x8−111x7+12010x6+9531x5−

3294x4 − 7264x3 − 3410x2 − 637x− 38.

Claim 4.2 K1(3,6)[3
6 : 33, 42]1 ≇ K2(3,6)[3

6 : 33, 42]1.

proof. Note that p(EG(K1(3,6)[3
6 : 33, 42]1)) = p(EG(K2(3,6)[3

6 : 33, 42]1)) = x9 − 24x7 − 38x6 +
51x5+78x4−44x3−24x2, but the maps are non-isomorphic. To see this, we use geometric argument
as follows: Define a basis {a, b} at any vertex vi (for 1 ≤ i ≤ 6), where a and b are minimal non-
trivial loops (i.e. non-trivial cycle with minimum number of vertices), now if we consider K1(3,6)[3

6 :
33, 42]1 then at each vi, we get a and b with length 3 (for example at v1, a = C3(v1, v6, u2) and
b = C3(v1, v2, v5)) while in K2(3,6)[3

6 : 33, 42]1, at each vi, we get a of length 3 and b of length 4
(for example at v1, we see that a = C3(v4, v1, u1) or a = C3(v4, v1, u2) and b = C4(v1, v2, v6, v4)).
Hence, K1(3,6)[3

6 : 33, 42]1 ≇ K2(3,6)[3
6 : 33, 42]1.

4.1.1 Computation:

Let M be a DSEM of type [36: 33, 42]1 with the vertex set V . Let V(36) and V(33,42) denote the
sets of vertices with face-sequence types (36) and (33, 42), respectively. Then, we see that the
number of triangular faces in M is 4|V(36)| or 2|V(33,42)|. This implies 2|V(36)| = |V(33,42)|. Thus for
|V | = (|V(33,42)|+ |V(33,42)|) ≤ 15, we let V = {a1, a2, . . . , a|V(36)|

, 1, 2, . . . , 2|V(36)|}, where |V(36)| ≤ 5.

Without loss of generality, we may assume lk(a1) = C6(a2, 1, 2, a3, 3, 4). This implies lk(a2) =
C6(a1, 1, n1, x1, n2, 4), lk(1) = C7(a1, a2, [n1, n3,n4, n5, 2]), lk(2) = C7(a1, a3, [n6, n7,n5, n4, 1]),
lk(a3) = C6(a1, 3, n8, x2, n6, 2), lk(3) = C7(a1, a3, [n8, n9, n10, n11, 4]) and lk(4) = C7(a1, a2, [n2,
n12,n11, n10, 3]) for some x1, x2 ∈ V(36) and n1, n2, . . . , n12 ∈ V(33,42).

Now considering lk(a2), we see that n1 6= 2 or 3 (for n1 = 2, the set {2, 1, a2} forms triangular
face in lk(a1) but not in lk(a2), for n1 = 3 we get deg(3) > 5). Similarly we see that n2 6∈ {2, 3}.
From these observations, we have (n1, x1, n2) ∈ {(5, a3, 6), (5, a4 , 6)}.
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Case 1: If (n1, x1, n2) = (5, a3, 6), then lk(a3) = C6(a1, 3, 6, a2, 5, 2) or lk(a3) = C6(a1, 3, 5, a2, 6, 2).

When lk(a3) = C6(a1, 3, 5, a2, 6, 2), then considering lk(2) we have (n4, n5, n7) ∈ {(4, 3, 5), (5, 3,
4)}. If (n4, n5, n7) = (5, 3, 4), then lk(1) is a cycle of length 5, a contradiction. On the other
hand, if (n4, n5, n7) = (4, 3, 5) then lk(2) = C7(a1, a3, [6, 5,3, 4, 1]), lk(1) = C7(a1, a2, [5, 6,4, 3, 2]),
completing successively, we get lk(4) = C7(a1, a2, [6, 5,1, 2, 3]), lk(3) = C7(a1, a3, [5, 6,2, 1, 4]),
lk(5) = C7(a2, a3, [3, 2,6, 4, 1]) and lk(6) = C7(a2, a3, [2, 3, 5, 1, 4]). Then we get M ∼= K2(3,6)[3

6:
33, 42]1 by the map i 7→ vi, aj 7→ uj , 1 ≤ i ≤ 6, 1 ≤ j ≤ 3.

When lk(a3) = C6(a1, 3, 6, a2, 5, 2), considering lk(2), we get (n4, n5, n7) ∈ {(4, 3, 6), (6, 3, 4), (3,
4, 6), (6, 4, 3), (3, 6, 4), (4, 6, 3)}. Observe that, (3, 4, 6) ∼= (6, 3, 4) by the map (1, 5, 2)(3, 4, 6)(a1 , a2,
a3), (3, 6, 4) ∼= (6, 4, 3) by the map (1, 5)(4, 6)(a1 , a3) and (4, 6, 3) ∼= (6, 3, 4) by the map (1, 2, 5)(3, 6,
4)(a1, a3, a2). So, we need to search only for (n4, n5, n7) ∈ {(4, 3, 6), (6, 3, 4), (6, 4, 3)}.

In case (n4, n5, n7) = (4, 3, 6), completing successively, we get lk(2) = C7(a1, a3, [5, 6,3, 4, 1]),
lk(3) = C7(a1, a3, [6, 5,2, 1, 4]), lk(4) = C7(a1, a2, [6, 5,1, 2, 3]), lk(1) = C7(a1, a2, [5, 6,4, 3, 2]),
lk(5) = C7(a2, a3, [2, 3,6, 4, 1]), lk(6) = C7(a2, a3, [3, 2,5, 1, 4]). This gives M ∼= T1(3,6)[3

6: 33, 42]1
by the map i 7→ vi, aj 7→ uj , 1 ≤ i ≤ 6, 1 ≤ j ≤ 3.

Proceeding similarly as above, for (n4, n5, n7) = (6, 3, 4) we get M ∼= K1(3,6)(3
6 : 33, 42)1 by the

map i 7→ vi, aj 7→ uj , where 1 ≤ i ≤ 6, 1 ≤ j ≤ 3.
For (n4, n5, n7) = (6, 4, 3), M ∼= T2(3,6)(3

6 : 33, 42)1, by the map i 7→ vi, aj 7→ uj , for 1 ≤ i ≤ 6,
1 ≤ j ≤ 3.

Case 2. For (n1, x1, n2) = (5, a4, 6) considering lk(a3) we get x2 ∈ {a4, a5}.

Subcase 2.1. If x2 = a4, then lk(a3) = C6(a1, 2, 7, a4, 8, 3). This implies lk(a4) = C6(a2, 5, 7, a3,
8, 6) or lk(a4) = C6(a2, 5, 8, a3, 7, 6).

When lk(a4) = C6(a2, 5, 7, a3, 8, 6), then, up to isomorphism, we see that (n13, n14, n15) ∈
{(2, 1, 5), (5, 1, 2), (1, 2, 7), (7, 2, 1), (7, 5, 1)}. Now doing computation for these case, we see:

If (n13, n14, n15) = (2, 1, 5), M ∼= K3(4,8)[3
6: 33, 42]1 by i 7→ vi, aj 7→ uj, 1 ≤ i ≤ 8, 1 ≤ j ≤ 4.

If (n13, n14, n15) = (5, 1, 2), M ∼= T3(4,8)[3
6: 33, 42]1 by i 7→ vi, aj 7→ uj , 1 ≤ i ≤ 8, 1 ≤ j ≤ 4.

If (n13, n14, n15) = (1, 2, 7), M ∼= T4(4,8)[3
6 : 33, 42]1 by i 7→ vi, aj 7→ uj, 1 ≤ i ≤ 8, 1 ≤ j ≤ 4.

If (n13, n14, n15) = (7, 2, 1), M ∼= K4(4,8)[3
6 : 33, 42]1 by i 7→ vi, aj 7→ uj , 1 ≤ i ≤ 8, 1 ≤ j ≤ 4.

If (n13, n14, n15) = (7, 5, 1), M ∼= T5(4,8)[3
6 : 33, 42]1 by i 7→ vi, aj 7→ uj, 1 ≤ i ≤ 8, 1 ≤ j ≤ 4.

On the other hand when lk(a4) = C6(a2, 5, 8, a3, 7, 6), we get (n13, n14, n15) ∈ {(2, 1, 5), (1, 5, 8),
(3, 8, 5), (5, 1, 2), (5, 8, 3), (8, 5, 1)}. If (n13, n14, n15) = (2, 1, 5) and (1, 5, 8), then lk(7) is a cycle of
length 5 and 6 respectively, which is not possible. If (n13, n14, n15) = (3, 8, 5) and (5, 1, 2), then
we see easily that lk(7) and lk(8) can not be completed respectively. If (n13, n14, n15) = (5, 8, 3),
then completing lk(7) we get lk(1) of length 5, again a contradiction. If (n13, n14, n15) = (8, 5, 1),
M ∼= K5(4,8)[3

6 : 33, 42]1 by i 7→ vi, aj 7→ uj, 1 ≤ i ≤ 8, 1 ≤ j ≤ 4.

Subcase 2.2. When x2 = a5, successively, we get lk(a3) = C6(a1, 2, 7, a5, 8, 3) and lk(a4) =
C6(a2, 6, 9, a5, 10, 5). This implies lk(a5) = C6(a4, 9, 7, a3, 8, 10) or lk(a5) = C6(a4, 9, 8, a3, 7, 10).

In case lk(a5) = C6(a4, 9, 7, a3, 8, 10), considering lk(1), we get (n3, n4, n5) ∈ {(3, 4, 6), (3, 8, 10),
(4, 3, 8), (4, 6, 9), (6, 4, 3), (6, 9, 7), (7, 9, 6), (8, 3, 4), (9, 6, 4), (10, 8, 3)}. But a small calculation shows
that no map exists for these cases, except for (n3, n4, n5) = (6, 4, 3). For (n3, n4, n5) = (6, 4, 3) we
get M ∼= K6(5,10)[3

6 : 33, 42]1 by the map i 7→ vi, aj 7→ uj , 1 ≤ i ≤ 10, 1 ≤ j ≤ 5.
On the other hand when lk(a5) = C6(a4, 9, 8, a3, 7, 10), considering lk(1), up to isomorphism,

we get (n3, n4, n5) ∈ {(3, 4, 6), (3, 8, 9), (4, 3, 8), (6, 4, 3)}. Now doing computation for these cases,
we see:

If (n3, n4, n5) = (3, 4, 6), M ∼= K7(5,10)[3
6 : 33, 42]1 by i 7→ vi, aj 7→ uj, 1 ≤ i ≤ 10 and 1 ≤ j ≤ 5.

If (n3, n4, n5) = (3, 8, 9), M ∼= T6(5,10)[3
6 : 33, 42]1 by i 7→ vi, aj 7→ uj, 1 ≤ i ≤ 10 and 1 ≤ j ≤ 5.

If (n3, n4, n5) = (4, 3, 8), M ∼= T7(5,10)[3
6 : 33, 42]1 by i 7→ vi, aj 7→ uj, 1 ≤ i ≤ 10 and 1 ≤ j ≤ 5.

If (n3, n4, n5) = (6, 4, 3), M ∼= T8(5,10)[3
6 : 33, 42]1 by i 7→ vi, aj 7→ uj ,1 ≤ i ≤ 10 and 1 ≤ j ≤ 5.

This completes computation for the number of vertices ≤ 15 and we obtain the following results.
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4.1.2 Results

Lemma 4.1 Let M be a DSEM of type [36 : 33, 42]1 with number of vertices ≤ 15. Then M is
isomorphic to one of the following: T1(3,6)[3

6 : 33, 42]1, T2(3,6)[3
6 : 33, 42]1, K1(3,6)[3

6 : 33, 42]1,
K2(3,6)[3

6 : 33, 42]1, T3(4,8)[3
6 : 33, 42]1, T4(4,8)[3

6 : 33, 42]1, T5(4,8)[3
6 : 33, 42]1, K3(4,8)[3

6 : 33, 42]1,
K4(4,8)[3

6 : 33, 42]1, K5(4,8)[3
6 : 33, 42]1, T6(5,10)[3

6 : 33, 42]1, T7(5,10)[3
6 : 33, 42]1, T8(5,10)[3

6 : 33, 42]1,
K6(5,10)[3

6 : 33, 42]1, K7(5,10)[3
6 : 33, 42]1, shown in Fig. 4.1.

Combining the Lemma 4.1 together with the Claims 4.1 and 4.2, it follows that:

Theorem 4.1 There are exactly 15 DSEMs of type [36 : 33, 42]1 on the surfaces of Euler charac-
teristic 0 with number of vertices ≤ 15. Out of these 8 are on the torus and remaining 7 are on the
Klein bottle.

4.2 Computation and classification for type [36: 33, 42]2

Consider the following DSEMs of type [36: 33, 42]2, shown in Fig. 4.2, on torus and Klein bottle
denoted by Ti(6,6)[3

6 : 33, 42]2, for i = 1, 2, and K1(6,6)[3
6 : 33, 42]2, respectively.

v6 v2 u2 u3 v4

v4
v3 u5 u6 v6

v5
v1 u1 u4 v5

v6 v2 u2 u3 v4

K1(6,6) [3
6 : 33, 42]2

v5 v2 u2 u3 v4

v4
v3 u5 u6 v6

v6
v1 u1 u4 v5

v5 v2 u2 u3 v4

T1(6,6) [3
6 : 33, 42]2

v6 v2 u2 u3 v4

v5
v3 u5 u6 v6

v4
v1 u1 u4 v5

v6 v2 u2 u3 v4

T2(6,6) [3
6 : 33, 42]2

Fig. 4.2: Doubley semi-equivelar maps on torus and Klein bottle of type [36 : 33, 42]2

Claim 4.3 T1(6,6)[3
6 : 33, 42]2 ≇ T2(6,6)[3

6 : 33, 42]2.

Proof. Follows from the following polynomials:

p(EG(T1(6,6)[3
6 : 33, 42]2)) = x12−33x10−44x9+258x8+432x7−682x6−1032x5+957x4+560x3−789x2+276x−32,

p(EG(T2(6,6)[3
6 : 33, 42]2)) = x12−33x10−44x9+252x8+456x7−568x6−1296x5+348x4+1328x3+108x2−432x−128.

4.2.1 Computation

Let M be a map of the type [36 : 33, 42]2 with the vertex set V . Let V36 and V33,42 denote the sets of
vertices with face-sequence types (36) and (33, 42), respectively. Observe that, M has the number

of edges = (5|V(36)| +
|V(33,42)|

2 ), number of triangular faces = 3|V(36)| and number of quadrangular

faces =
|V(33,42)|

2 . Now by the Euler characteristic equation, we get (|V(36)|+ |V(33,42)|)− (5|V(36)|+
|V(33,42)|

2 ) + (3|V(36)| +
|V(33,42)|

2 ) = 0. This implies |V(36)| = |V(33,42)|. Also, considering the number
of quadrangular faces, it is evident that the cardinality of both the sets should be positive even
integer. Thus for |V | ≤ 15, we let V = {a1, a2, . . . , a|V(36)|

, 1, 2, . . . , |V(36)|}, where |V(36)| = 2k for

k ≤ 3.
Without loss of generality, assume lk(a1) = C6(a2, a3, a4, a5, 1, 2). This implies lk(1) = C7(a1, a5,

[n1, n2, n3, n4, 2]), lk(2) = C7(a2, a1, [1, n3,n4, n6, n5]) and lk(a2) = C6(a1, a3, x1, x2, 3, 2) for some
n1, . . . , n6 ∈ Vm and x1, x2 ∈ Vl. It is easy to see that (x1, x2) ∈ {(a5, a4), (a6, a5)}.
Case 1. When (x1, x2) = (a5, a4). Then, successively, we get lk(a2) = C6(a1, a3, a5, a4, 3, 2),
lk(a5) = C6(a1, a4, a2, a3, 4, 1), lk(a3) = C6(a4, a1, a2, a5, 4, 5) and lk(a4) = C6(a3, a1, a5, a2, 3, 5).
Now considering lk(1), we see that (n2, n3, n4) has no value for the V so that the links of remaining
vertices can be completed. So (x1, x2) 6= (a5, a4).
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Case 2. When (x1, x2) = (a6, a5), then successively we get lk(a2) = C6(a1, a3, a6, a5, 3, 2), lk(a5) =
C6(a1, a4, a6, a2, 3, 1), lk(a4) = C6(a3, a1, a5, a6, 5, 4), lk(a3) = C6(a4, a1, a2, a6, 6, 4), lk(a6) =
C6(a3, a2, a5, a4, 5, 6). Considering lk(1), it is easy to see that, (n2, n3, n4) ∈ {(4, 5, 6), (4, 6, 5), (5, 4, 6),
(5, 6, 4), (6, 4, 5), (6, 5, 4)}.

Observe that (4, 5, 6) ∼= (6, 4, 5) by the map (1, 3, 2)(5, 6, 4)(a1 , a5, a2)(a3, a4, a6); (4, 5, 6) ∼=
(5, 6, 4) by the map (1, 2, 3)(4, 6, 5)(a1, a2, a5)(a3, a6, a4) and (5, 4, 6) ∼= (6, 5, 4) by the map
(1, 3)(4, 6)(a1 , a2)(a4, a6). So we search for (n2, n3, n4) ∈ {(4, 5, 6), (4, 6, 5), (5, 4, 6)}. Now doing
computation for these cases, we see:

If (n2, n3, n4) = (4, 5, 6), M ∼= K1(6,6)[3
6 : 33, 42]2 by the map i 7→ vi, ai 7→ ui, 1 ≤ i ≤ 6.

If (n2, n3, n4) = (4, 6, 5), M ∼= T1(6,6)[3
6 : 33, 42]2 by the map i 7→ vi, ai 7→ ui, 1 ≤ i ≤ 6

If (n2, n3, n4) = (5, 4, 6), M ∼= T2(6,6)[3
6 : 33, 42]2 by the map i 7→ vi, ai 7→ ui, 1 ≤ i ≤ 6.

This completes computation for ≤ 15 vertices. From this we get following results.

4.2.2 Results

Lemma 4.2 Let M be a DSEM of type [36 : 33, 42]2 on the surfaces of Euler characteristic 0
with ≤ 15 vertices. Then M is isomorphic to one of K1(6,6)[3

6 : 33, 42]2, T1(6,6)[3
6 : 33, 42]2 and

T1(6,6)[3
6 : 33, 42]2, given in Fig. 4.2.

Combining Lemma 4.2 with Claim 4.3, it follows that:

Theorem 4.2 There are exactly 3 non-isomorphic DSEMs of type [36 : 33, 42]2 with number of
vertices ≤ 15. Out of these 2 are on torus and remaining one on Klein bottle.

4.3 Computation and classification for type [36 : 32, 4, 3, 4]

Consider the following DSEM of type [36 : 32, 4, 3, 4], given in Fig. 4.3 on Klein bottle denoted by
K1(2,12)[3

6 : 32, 4, 3, 4].

v1 v9

v6v9 v10v2

v10 v5 v3
v11 v7

v12

v4 v8
v2

v12
v1

v1 v7 v9 v6

u1 u2

K1(2,12)[3
6 : 32, 4, 3, 4]

Fig. 4.3: Doubley semi-equivelar maps on Klein bottle of type [36 : 32, 4, 3, 4]

4.3.1 Computation

Let M be a map of the type [36 : 32, 4, 3, 4] with the vertex set V . Let V(36) and V(32,4,3,4) denote
the sets of vertices with face-sequence types (36) and (32, 4, 3, 4) respectively. It is easy to see
that 6|V(36)| = |V(32,4,3,4)|. Thus, for |V | ≤ 15, we let V = {a1, a2, . . . , a|V(36)|

, 1, 2, . . . , 6|V(36)|},

where |V(36)| ≤ 2. Without loss of generality, we assume lk(a1) = C6(1, 2, 3, 4, 5, 6). Then, succes-
sively, we have lk(1) = C7(a1, [2, n1, n2], [n3, n4, 6]), lk(2) = C7(a1, [1, n2, n1], [n5, n6, 3]), lk(3) =
C7(a1, [2, n5, n6], [n7, n8, 4]), lk(4) = C7(a1, [3, n7, n8], [n9, n10, 5]), lk(5) = C7(a1, [4, n9, n10], [n11,
n12, 6]), lk(6) = C7(a1, [1, n3, n4], [n12, n11, 5]), where ni ∈ Vm for 1 ≤ i ≤ 12. Now considering
lk(1), we see that n1 ∈ {4, 5, 7}.
Case 1: If n1 = 4, then successively, we see that n2 = 5, n3 = 7, n4 = 8, now considering lk(5) and
lk(1), we get two quadrangular faces which share more than one vertex, which is not allowed. So
n1 6= 4.
Case 2: If n1 = 5, then successively, we get n2 = 4, n3 = 7, n4 = 8, n12 = 9, n11 = 10.
Now completing lk(1), lk(6), lk(5), lk(2), lk(3), lk(4), lk(7) and lk(10) we see that, lk(a2) =
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C6(7, 8, 11, 10, 9, 12) or lk(a2) = C6(7, 8, 9, 10, 11, 12). If lk(a2) = C6(7, 8, 9, 10, 11, 12), then lk(8) is
a cycle of length 5, a contradiction. If lk(a2) = C6(7, 8, 11, 10, 9, 12), then completing successively,
we get M ∼= K1(2,12)[3

6 : 32, 4, 3, 4] by the map i 7→ vi, aj 7→ uj , 1 ≤ i ≤ 12, 1 ≤ j ≤ 2.
Case 3: If n1 = 7, then we get (n2, n3) ∈ {(8, 3), (8, 4), (8, 9)}.

For (n2, n3) = (8, 3), n4 = 4 and lk(1) = C7(a1, [2, 7, 8], [3, 4, 6]). Now considering successively
lk(3) and lk(1) we see two quadrangular faces which share more than one vertex, which is not
allowed. Hence (n2, n3) 6= (8, 3).

For (n2, n3) = (8, 4), completing successively lk(1), lk(4), lk(5), lk(6), lk(3), lk(2), lk(11), lk(8)
we see that, lk(a2) = C6(7, 8, 9, 10, 11, 12) or lk(a2) = C6(7, 8, 9, 12, 11, 10).

If lk(a2) = C6(7, 8, 9, 10, 11, 12), then lk(7) is a cycle of length 5, a contradiction.
If lk(a2) = C6(7, 8, 9, 12, 11, 10), completing successively, we get M ∼= K1(2,12)-[3

6 : 32, 4, 3, 4] via
1 7→ v9, 2 7→ v10, 3 7→ v11, 4 7→ v8, 5 7→ v7, 6 7→ v12, 7 7→ v5, 8 7→ v6, 9 7→ v1, 10 7→ v4, 11 7→ v3,
12 7→ v2, a1 7→ u2, a2 7→ u1.

If (n2, n3) = (8, 9), n4 = 10. This implies lk(1) = C7(a1, [2, 7, 8], [9, 10, 6]), lk(6) = C7(a1, [1, 9,
10], [n12, n11, 5]) for (n11, n12) ∈ {(3, 2), (11, 4), (11, 7), (11, 12)}. A small calculation shows, no map
exists for (n11, n12) ∈ {(11, 4), (11, 7), (11, 12)}. For (n11, n12) = (3, 2), completing successively, we
get M ∼= K1(2,12)[3

6 : 32, 4, 3, 4] via 1 7→ v3, 2 7→ v4, 3 7→ v5, 4 7→ v6, 5 7→ v1, 6 7→ v2, 7 7→ v7,
8 7→ v12, 9 7→ v11, 10 7→ v10, 11 7→ v9, 12 7→ v8, a1 7→ u1, a2 7→ u2. This completes computation of
the DSEM for ≤ 15. This gives the following result.

4.3.2 Result

Theorem 4.3 There exists a unique DSEM of type [36 : 32, 4, 3, 4] on the surfaces of Euler charac-
teristic 0 for ≤ 15 vertices. This is K1(2,12)[3

6 : 32, 4, 3, 4] on Klein bottle, given in Fig. 4.3.

4.4 Computation and classification for type [33, 42 : 32, 4, 3, 4]1

Consider the following DSEM of type [33, 42 : 32, 4, 3, 4]1, shown in Fig. 4.4, on torus denoted by
T1(4,8)[3

3, 42 : 32, 4, 3, 4]1.

u4 u3 u4u1

u2

v1

v6

v4
v7 v8

v2 v3

v5

v2 v3
v6

v7

v7 v8

v5

v2

T1(4,8)[3
3, 42 : 32, 4, 3, 4]1

Fig. 4.4: Doubley semi-equivelar map on torus of type [33, 42 : 32, 4, 3, 4]1

4.4.1 Computation

Let M be a map of the type [33, 42 : 32, 4, 3, 4]1 with the vertex set V . Let V(33) and V(32,4,3,4)

denote the sets of vertices with face-sequence types (33, 42) and (32, 4, 3, 4), respectively. It is
easy to see that 2|V(33 ,42)| = |V(32,4,3,4)| and |V(32,4,3,4)| is multiple of 4. Therefore, for |V | ≤ 15,
we let V = {a1, a2, . . . , a|V(33,42)|

, 1, 2, . . . , 2|V(33 ,42)|}, where |V(33,42)| ≤ 4. Assume that lk(a1) =

C7(2, 3, [4, 5,a2, 6, 1]). Then lk(a2) = C7(7, 8, [5, 4,a1, 1, 6]). This implies lk(2) = C7(a1, [1, x1, x2],
[n1, n2, 3]) or lk(2) = C7(a1, [3, x1, x2], [n1, n2, 1]), for x1, x2 ∈ V(33,42) and n1, n2 ∈ V(32,4,3,4). In
the first case of lk(2), considering lk(1), we see three quadrangular faces incident at 1, which is not
allowed. On the other hand when lk(2) = C7(a1, [3, x1, x2], [n1, n2, 1]), we get x1 = a3, x2 = a4 and
(n1, n2) ∈ {(5, 8), (7, 8), (8, 5), (8, 7)}.
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For (n1, n2) = (7, 8), considering lk(1) and lk(2), we see that lk(a3) = C7(1, 8, [3, 2, a4, n3, 6]) or
lk(a3) = C7(1, 6, [3, 2,a4, n3, 8]), but for both the cases of lk(a3), we get no suitable value for n3 in
V(32,4,3,4). So (n1, n2) 6= (7, 8).

For (n1, n2) = (8, 5), then completing lk(2), lk(1) and proceeding, as in previous case, we see
that lk(3) can not be completed.

For (n1, n2) = (8, 7), considering lk(2) and lk(1), we see that lk(7) can not be completed.
For (n1, n2) = (5, 8), successively, we get lk(2) = C7(a1, [3, a3, a4], [5, 8, 1]), lk(5) = C7(a4, [4, a1,

a2], [8, 1, 2]), lk(1) = C7(a3, [6, a2, a1], [2, 5, 8]). Then lk(a3) = C7(1, 8, [3, 2,a4, 7, 6]) or lk(a3) =
C7(1, 6, [3, 2,a4, 7, 8]).

When lk(a3) = C7(1, 8, [3, 2,a4, 7, 6]), completing lk(a4), we see that lk(7) can not be completed.
When lk(a3) = C7(1, 6, [3, 2,a4, 7, 8]), completing successively, we get M ∼= T1(4,8)[3

3, 42 :
32, 4, 3, 4]1 by the map i 7→ vi, aj 7→ uj, 1 ≤ i ≤ 8, 1 ≤ j ≤ 4. Thus the computation is
completed for ≤ 15 vertices. This leads to the following result.

4.4.2 Result

Theorem 4.4 There exists a unique DSEM of type [33, 42 : 32, 4, 3, 4]1 with number of vertices
≤ 15. This is T1(4,8)[3

3, 42 : 32, 4, 3, 4]1 on torus, shown in Fig. 4.4.

4.5 Computation and classification for type [33, 42 : 32, 4, 3, 4]2

Consider the following DSEM of type [33, 42 : 32, 4, 3, 4]2, shown in Fig. 4.5, on Klein bottle denoted
by K1(6,6)[3

3, 42 : 32, 4, 3, 4]2 .

v6 v1 v2 v6 v1 v2 v6

v3 v5 v4 v3 v5 v4 v3

u3 u6 u5 u4 u2 u1
u3

K1(6,6) [3
3, 42 : 32, 4, 3, 4]2

Fig. 4.5: Doubley semi-equivelar map of type [33, 42 : 32, 4, 3, 4]1 on Klein bottle

4.5.1 Computation

Let M is a map of the type [33, 42 : 32, 4, 3, 4]2 with the vertex set V . Let V(33,42) and V(32,4,3,4)

denote the sets of vertices with face-sequence types (33, 42) and (32, 4, 3, 4) respectively. Then we
see easily that |V(33,42)| = |V(32,4,3,4)| = 2k for k ∈ N. Thus for |V |(= |V(33,42)|+ |V(32,4,3,4)|) ≤ 15, we
let V = {a1, a2, . . ., a|V(33,42)|

, 1, 2, . . . , |V(33,42)|}, where |V(33,42)| = 2k for k ≤ 3. Assuming, without

loss of generality, lk(a1) = C7(a3, 3, [4, 5,a2, 1, 2]). This implies lk(a2) = C7(x1, n1, [5, 4,a1, 2, 1]) or
lk(a2) = C7(x1, n1, [1, 2,a1, 4, 5]) for x1 ∈ V(33,42) and n1 ∈ V(32,4,3,4).

If lk(a2) = C7(x1, n1, [5, 4,a1, 2, 1]), then a small calculation shows that no such map exists for
the given V . On the other hand, if lk(a2) = C7(x1, n1, [1, 2,a1, 4, 5]), then we have x1 = a4, n1 = 6.
This implies lk(2) = C7(a3, [a1, a2, 1], [x2, x3, n2]), where (x2, x3, n2) ∈ {(a5, a4, 5), (a5, a4, 6)}. If
(x2, x3, n2) = (a5, a4, 5), then lk(a3) = C7(a1, 2, [5, n3,a6, n4, 3]). Now considering lk(5) we see
three quadrangular faces incident at 5, which is not allowed. If (x2, x3, n2) = (a5, a4, 6), lk(2) =
C7(a3, [a1, a2, 1], [a5, a4, 6]). This implies lk(a3) = C7(a1, 2, [6, n3, a6, n4, 3]), where (n3, n4) ∈
{(1, 5), (4, 1), (4, 5)}. In case (n3, n4) = (4, 1) and (4, 5), we see respectively lk(1) and lk(4) can
not be completed. If (n3, n4) = (1, 5), M ∼= K1(6,6)[3

3, 42 : 32, 4, 3, 4]2 by the map i 7→ vi, ai 7→ ui,
1 ≤ i ≤ 6. Thus the computation is completed. Then we obtain the following result.
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4.5.2 Result

Theorem 4.5 There exists a unique DSEM of type [33, 42 : 32, 4, 3, 4]2 with number of vertices
≤ 15. This is K1(6,6)[3

3, 42 : 32, 4, 3, 4]2 on Klein bottle, shown in Fig. 4.5.

4.6 Computation and classification for type [33, 42 : 44]1

Consider the DSEMs of type [33, 42 : 44]1, in Fig. 4.6 on torus and Klein bottle denoted by
Ti(n,2n)[3

3, 42 : 44]1, for i ∈ {1, . . . , 6}, and Ki(n,2n)[3
3, 42 : 44]1, for i ∈ {1, . . . , 3}, respectively.

v6 v5 v4 v6

u3 u1 u2
u3

v1 v2 v3
v1

v5 v6 v4 v5

K1(3,6) [3
3, 42 : 44]1

v6 v5 v4 v6

u3 u1 u2
u3

v1 v2 v3
v1

v6 v5 v4 v6

T1(3,6) [3
3, 42 : 44]1

v6 v5 v4 v6

u3 u1 u2
u3

v1 v2 v3
v1

v4 v6 v5 v4

T2(3,6) [3
3, 42 : 44]1

v6 v5 v4 v8 v6

u3 u1 u2 u4
u3

v1 v2 v3 v7
v1

v5 v6 v8 v4 v5

K2(4,8) [3
3, 42 : 44]1

v6 v5 v4 v8 v6

u3 u1 u2 u4
u3

v1 v2 v3 v7
v1

v5 v6 v8 v4 v5

T3(4,8) [3
3, 42 : 44]1

v6 v5 v4 v8 v6

u3 u1 u2 u4
u3

v1 v2 v3 v7
v1

v5 v4 v8 v6 v5

T4(4,8) [3
3, 42 : 44]1

v6 v5 v4 v8 v10 v6

u3 u1 u2 u4 u5
u3

v1 v2 v3 v7 v9
v1

v8 v10 v6 v5 v4 v8

T5(5,10) [3
3, 42 : 44]1

v6 v5 v4 v8 v10 v6

u3 u1 u2 u4 u5
u3

v1 v2 v3 v7 v9
v1

v4 v8 v10 v6 v5 v4

T6(5,10) [3
3, 42 : 44]1

v6 v5 v4 v8 v10 v6

u3 u1 u2 u4 u5
u3

v1 v2 v3 v7 v9
v1

v5 v6 v10 v8 v4 v5

K4(5,10) [3
3, 42 : 44]1

v6 v5 v4 v8 v10 v6

u3 u1 u2 u4 u5
u3

v1 v2 v3 v7 v9
v1

v5 v6 v10 v8 v4 v5

T7(5,10) [3
3, 42 : 44]1

v8 u4 v7

v6 u3 v7

v4
u2 v3

v5
u1 v2

v1 u3

v9 u5

v7 u4

v6u3

v10u5

v8u4

K3(5,10) [3
3, 42 : 44]1

Fig. 4.6: Doubley semi-equivelar maps of type [33, 42 : 44]1 on torus and Klein bottle

Claim 4.4 For the maps above we have the following:

(g) T1(3,6)[3
3, 42 : 44]1 ≇ T2(3,6)[3

3, 42 : 44]1.

(h) T3(4,8)[3
3, 42 : 44]1 ≇ T4(4,8)[3

3, 42 : 44]1.

(i) T5(5,10)[3
3, 42 : 44]1 ≇ T6(5,10)[3

3, 42 : 44]1 ≇ T7(5,10)[3
3, 42 : 44]1.

(j) K3(5,10)[3
3, 42 : 44]1 ≇ K4(5,10)-[3

3, 42 : 44]1.

Proof. Follows by considering the following polynomials:

p(EG(T1(3,6)[3
3, 42 : 44]1)) = x9 − 21x7 − 24x6 + 72x5 + 72x4 − 99x3 − 54x2 + 54x,

p(EG(T2(3,6)[3
3, 42 : 44]1)) = x9 − 21x7 − 18x6 + 54x5,

p(EG(T3(4,8)[3
3, 42 : 44]1)) = x12 − 28x10 − 16x9 + 212x8 + 88x7 − 684x6 − 48x5 + 912x4 − 272x3 − 240x2 + 96x,

p(EG(T4(4,8)[3
3, 42 : 44]1)) = x12 − 28x10 − 24x9 + 212x8 + 280x7 − 524x6 − 976x5 + 80x4 + 880x3 + 528x2 + 96x,

p(EG(K3(5,10)[3
3, 42 : 44]1)) = x15 − 5x13 − 40x12 + 385x11 + 790x10 − 1100x9 − 3620x8 + 55x7 + 6200x6 + 3305x5 −

3500x4 − 3265x3 − 190x2 + 270x − 24,

p(EG(K4(5,10)[3
3, 42 : 44]1)) = x15 − 35x13− 24x12 +401x11 +434x10− 1832x9 − 2468x8 +3123x7 +5232x6 − 939x5−

3716x4 − 1261x3 + 30x2 + 30x,
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p(EG(T5(5,10)[3
3, 42 : 44]1)) = x15−35x13−20x12+425x11+294x10−2500x9−1520x8+7855x7+3060x6−12919x5−

1100x4 + 8815x3 − 2250x2 + 150x,

p(EG(T6(5,10)[3
3, 42 : 44]1)) = x15 −35x13−20x12+395x11+344x10−1790x9−1960x8+3150x7+3920x6−2059x5−

3000x4 + 235x3 + 750x2 + 150x,

p(EG(T7(5,10)[3
3, 42 : 44]1)) = x15 − 35x13 − 30x12 + 395x11 + 594x10 − 1495x9 − 3360x8 + 175x7 + 3990x6 + 2166x5.

4.6.1 Computation

Let M be a map of the type [33, 42 : 44]1 with the vertex set V . Let V(44) and V(33,42) de-
note the sets of vertices with face-sequence types (44) and (33, 42), respectively. Then counting
the number of quadrangular faces in terms of |V(33,42)| and |V(44)| we see easily that |V(33,42)| =
2|V(44)|. Thus for |V | ≤ 15, we let V = {a1, a2, . . . , a|V(44)|

, 1, 2, . . . , 2|V(44)|} such that |V(44)| ≤

5. Assume, without loss of generality, lk(a1) = C8(a3, 1,2, 3,a2, 4,5, 6). This implies lk(a2) =
C8(a1, 2,3, n1,x1, n2,4, 5) for x1 ∈ V(44) and n1, n2 ∈ V(33,42). Observe that x1 ∈ {a3, a4}.
Case 1. When x1 = a3, then (n1, n2) ∈ {(1, 6), (6, 1)}.

If (n1, n2) = (6, 1), then lk(a2) = C8(a1, 2,3, 6,a3, 1,4, 5) and lk(a3) = C8(a2, 3, 6, 5,a1, 2,1, 4).
This implies lk(1) = C7(n3, n4, [2, a1,a3, a2, 4]). It is easy to see that (n3, n4) ∈ {(3, 6), (5, 6), (6, 3),
(6, 5)}. But for these values of (n3, n4), we see easily that no map exists.

On the other hand, if (n1, n2) = (1, 6), then lk(a2) = C8(a1, 2,3, 1,a3, 6,4, 5), lk(a3) =
C8(a2, 3,1, 2,a1, 5,6, 4). This implies lk(1) = C7(n3, n4, [2, a1,a3, a2, 3]), for (n3, n4) ∈ {(4, 5), (4, 6),
(5, 4), (5, 6), (6, 4), (6, 5)}.

Observe that, (5, 6) ∼= (4, 5) by the map (1, 3, 2)(4, 5, 6)(a1 , a3, a2); (6, 4) ∼= (4, 5) by the map
(1, 2, 3)(4, 6, 5)(a1 , a2, a3) and (6, 5) ∼= (4, 6) by the map (2, 3)(4, 5)(a1 , a2). Thus we search for
(n3, n4) ∈ {(4, 5), (4, 6), (5, 4), (5, 6)}. Now doing computation for these cases, we see:

If (n3, n4) = (4, 5), M ∼= K1(3,6)[3
3, 42 : 44]1 by the map i 7→ v6, aj 7→ uj, 1 ≤ i ≤ 6, 1 ≤ j ≤ 3.

If (n3, n4) = (4, 6), M ∼= T1(3,6)[3
3, 42 : 44]1 by the map i 7→ v6, aj 7→ uj, 1 ≤ i ≤ 6, 1 ≤ j ≤ 3.

If (n3, n4) = (5, 4), M ∼= T2(3,6)[3
3, 42 : 44]1 by the map i 7→ v6, aj 7→ uj, 1 ≤ i ≤ 6, 1 ≤ j ≤ 3.

Case 2. When x1 = a4, hen considering lk(a3) = C8(a1, 2,1, n3,x2, n4,6, 5) we get x2 ∈ {a4, a5}.
Subcase 2.1. If x2 = a4, then (n3, n4) ∈ {(7, 8), (8, 7)}. If (n3, n4) = (8, 7), (n5, n6) ∈ {(4, 5), (5, 4),
(5, 6), (6, 5), (6, 7), (7, 3), (7, 6)}. If (n5, n6) = (4, 5), then considering successively lk(1), lk(5) and
lk(8) we see that deg(4) > 5, a contradiction. If (n5, n6) = (5, 4), then considering successively,
lk(1), lk(5), lk(2) and lk(6), we get lk(7) of length 5, a contradiction. Proceeding similarly for the
rest of the cases of (n5, n6), we see easily that no map exists.

On the other hand, if (n3, n4) = (7, 8), then lk(1) = C7(n5, n6, [2, a1,a3, a4, 7]), where (n5, n6) ∈
{(4, 5), (4, 8), (5, 4), (5, 6), (6, 5), (6, 8), (8, 4), (8, 6)}. But, (5, 4) ∼= (4, 8) by the map (1, 3)(4, 6)(a2 , a3);
(5, 6) ∼= (4, 5) by the map (1, 7)(2, 3)(4, 5) (6, 8)(a1, a2)(a3, a4); (6, 8) ∼= (4, 5) by the map (1, 2, 3, 7)(4,
8, 6, 5)(a1, a2, a4, a3); (8, 4) ∼= (4, 5) by the map (1, 3)(2, 7)(4, 6)(5, 8)(a1, a4) (a2, a3); (8, 6) ∼= (6, 5)
by the map (1, 7)(2, 3)(4, 5)(6, 8)(a1 , a2)(a3, a4). So we search for (n5, n6) ∈ {(4, 5), (4, 8), (6, 5)}.
Now doing computation for these cases, we see:

If (n5, n6) = (4, 5), M ∼= K2(4,8)[3
3, 42 : 44]1 by the map i 7→ v6, aj 7→ uj, 1 ≤ i ≤ 8, 1 ≤ j ≤ 4.

If (n5, n6) = (4, 8), M ∼= T3(4,8)[3
3, 42 : 44]1 by the map i 7→ v6, aj 7→ uj, 1 ≤ i ≤ 8, 1 ≤ j ≤ 4.

If (n5, n6) = (6, 5), M ∼= T4(4,8)[3
3, 42 : 44]1 by the map i 7→ v6, aj 7→ uj, 1 ≤ i ≤ 8, 1 ≤ j ≤ 4.

Subcase 2.2. When x2 = a5, then considering lk(a4), we see that (n5, n6) ∈ {(9, 10), (10, 9)}. If
(n5, n6) = (10, 9), (n7, n8) ∈ {(3, 7), (4, 5), (4, 8), (5, 4), (5, 6), (6, 5), (6, 10), (7, 10), (10, 6), (10, 7)}.
But, a small calculation shows that no map exists for these values of (n7, n8).

While for (n5, n6) = (9, 10) completing successively lk(a4), lk(a5) we get lk(1) = C7(n7, n8, [2, a1,
a3, a5, 9]). Then, up to isomorphism, we get (n7, n8) ∈ {(3, 7), (4, 5), (5, 4), (6, 5)}. Doing compu-
tation for these cases, we see:

If (n7, n8) = (3, 7), M ∼= K3(5,10)[3
3, 42 : 44]1 by the map i 7→ vi, aj 7→ uj, 1 ≤ i ≤ 10, 1 ≤ j ≤ 5.

If (n7, n8) = (4, 5), M ∼= K4(5,10)[3
3, 42 : 44]1 by the map i 7→ vi, aj 7→ uj, 1 ≤ i ≤ 10, 1 ≤ j ≤ 5.
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If (n7, n8) = (4, 8), M ∼= T5(5,10)[3
3, 42 : 44]1 by the map i 7→ vi, aj 7→ uj, 1 ≤ i ≤ 10, 1 ≤ j ≤ 5.

If (n7, n8) = (5, 4), M ∼= T6(5,10)[3
3, 42 : 44]1 by the map i 7→ vi, aj 7→ uj, 1 ≤ i ≤ 10, 1 ≤ j ≤ 5.

If (n7, n8) = (6, 5), M ∼= T7(5,10)[3
3, 42 : 44]1 by the map i 7→ vi, aj 7→ uj, 1 ≤ i ≤ 10, 1 ≤ j ≤ 5.

This completes the computation and we get the following results.

4.6.2 Results

Lemma 4.3 Let M be a DSEM of type [33, 42 : 44]1 with number of vertices ≤ 15. Then M is
isomorphic to one of the following: T1(3,6)[3

3, 42 : 44]1, T2(3,6)[3
3, 42 : 44]1, K1(3,6)[3

3, 42 : 44]1,
T3(4,8)[3

3, 42 : 44]1, T4(4,8)[3
3, 42 : 44]1, K2(4,8)[3

3, 42 : 44]1, T5(5,10)[3
3, 42 : 44]1, T6(5,10)[3

3, 42 : 44]1,
T7(5,10)[3

3, 42 : 44]1, K3(5,10)[3
3, 42 : 44]1, K4(5,10)[3

3, 42 : 44]1, shown in Fig. 4.6.

Combining the above lemma together with the Claim 4.4, it follows that:

Theorem 4.6 There are exactly 11 non-isomorphic DSEMs of type [33, 42 : 44]1 on the surfaces of
Euler characteristic 0 with ≤ 15 vertices. Out of these 7 are on torus and remaining 4 are on Klein
bottle.

4.7 Computation and classification for type [33, 42 : 44]2

Consider the following DSEMs of type [33, 42 : 44]2, shown in Fig. 4.7, on torus and Klein bottle
denoted by Ti(6,6)[3

3, 42 : 44]2, for i = 1, 2, and K1(6,6)[3
3, 42 : 44]2, respectively.

v4 v3 v6 v4

u4 u5 u6
u4

u3 u2 u1
u3

v2 v1 v5
v2

v3 v4 v6 v3

K1(6,6) [3
3, 42 : 44]2

v4 v6 v3 v4

u4 u5 u6
u4

u3 u2 u1
u3

v2 v1 v5
v2

v3 v4 v6 v3

T1(6,6) [3
3, 42 : 44]2

v3 v4 v6 v3

u4 u5 u6
u4

u3 u2 u1
u3

v2 v1 v5
v2

v3 v4 v6 v3

T2(6,6) [3
3, 42 : 44]2

Fig. 4.7: Doubley semi-equivelar maps of type [33, 42 : 44]2 on torus and Klein bottle

Claim 4.5 T1(6,6)[3
3, 42 : 44]2 ≇ T2(6,6)[3

3, 42 : 44]2.

Proof. See the following polynomials:
p(EG(T1(6,6)[3

3, 42 : 44]2)) = x12−27x10−20x9+207x8+168x7−610x6−288x5+723x4−136x3−171x2+84x−11,

p(EG(T2(6,6)[3
3, 42 : 44]2)) = x12−27x10−20x9+201x8+192x7−532x6−552x5+492x4+560x3−84x2−192x−44.

4.7.1 Computation

Let M be a map of the type [33, 42 : 44]2 with the vertex set V . Let V(44) and V(33,42) denote the sets
of vertices with face-sequence types (44) and (33, 42), respectively. Then, it is easy to see that M

has the number of quadrangular faces
3|V(44)|

2 or (|V(33,42)|+
|V44 |
2 ). This implies |V(44)| = |V(33,42)| =

2k for k ∈ N. Therefore for |V | ≤ 15, we let V = {a1, a2, . . . , a|V(44)|
, 1, 2, . . . , |V(44)|}, where

|V(44)| = 2k for k ≤ 3. Without loss of generality, we may assume lk(1) = C7(3, 4, [5, a1 ,a2, a3, 2]).
Then lk(a2) = C8(a3, 2,1, 5,a1, a6,a5, a4), lk(a1) = C8(a2, 1,5, n1,x1, x2,a6, a5) for n1 ∈ Vm and
x1, x2 ∈ Vl. Observe that (n1, x1, x2) ∈ {(2, a3, a4), (3, a4, a3), (6, a4, a3)}.
Case 1. When (n1, x1, x2) = (3, a4, a3) then considering successively lk(a1), lk(a4), lk(a5), lk(3)
and lk(4) we see that lk(5) can not be completed. So (n1, x1, x2) 6= (2, a4, a3).
Case 2. When (n1, x1, x2) = (6, a4, a3) then lk(a1) = C8(a2, 1,5, 6,a4, a3,a6, a5) and lk(a4) =
C8(a1, 5,6, n2,a5, a2,a3, a6) for n2 ∈ {3, 4, 7}.
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If n2 = 3 then considering successively lk(a4), lk(a5), lk(a6), lk(a3), lk(3) and lk(2) we see lk(4)
can not be completed.

If n2 = 4 then considering successively lk(a4), lk(a5), lk(a6), lk(a3), lk(4), as in previous case,
we see that lk(5) can not be completed.

If n2 = 7 then considering successively lk(a4), lk(a5) and lk(a6) we see that lk(a3) can not be
completed. So (n1, x1, x2) 6= (6, a4, a3).
Case 3. If (n1, x1, x2) = (2, a3, a4), then successively completing lk(a1), lk(a3), lk(2) and lk(5) we
get lk(4) = C7(1, 5, [6, x5,x4, x3, 3]) for (x3, x4, x5) ∈ {(a5, a4, a6), (a6, a4, a5), (a4, a5, a6), (a6, a5, a4),
(a4, a6, a5), (a5, a6, a4)}.

Note that (a6, a5, a4) ∼= (a5, a4, a6) by the map (1, 5, 2)(3, 4, 6)(a1 , a3, a2)(a4, a5, a6); (a4, a6, a5) ∼=
(a5, a4, a6) by the map (1, 2, 5) (3, 6, 4)(a1 , a2, a3)(a4, a6, a5); (a5, a6, a4) ∼= (a4, a5, a6) by the map
(2, 5)(3, 4)(a1 , a3)(a4, a6).

Thus we do computation for (x3, x4, x5) ∈ {(a5, a4, a6), (a6, a4, a5), (a4, a5, a6)}. This gives:
If (x3, x4, x5) = (a5, a4, a6), M ∼= K1(6,6)[3

3, 42 : 44]2 by the map i 7→ vi, ai 7→ ui, 1 ≤ i ≤ 6.
If (x3, x4, x5) = (a6, a4, a5), M ∼= T1(6,6)[3

3, 42 : 44]2 by the map i 7→ vi, ai 7→ ui, 1 ≤ i ≤ 6.
If (x3, x4, x5) = (a4, a5, a6), M ∼= T2(6,6)[3

3, 42 : 44]2 by the map i 7→ vi, ai 7→ ui, 1 ≤ i ≤ 6.
Thus the computation is completed and we get the following results.

4.7.2 Results

Lemma 4.4 Let M be a DSEM of type [33, 42 : 44]2 with number of vertices ≤ 15. Then M is
isomorphic to T1(6,6)[3

3, 42 : 44]2, T2(6,6)[3
3, 42 : 44]2 or K1(6,6)[3

3, 42 : 44]2, shown in Fig. 4.7.

Combining the Lemma 4.4 together with the Claim 4.5, it follows that:

Theorem 4.7 There are exactly 3 non-isomorphic DSEMs of type [33, 42 : 44]2 on the surfaces of
Euler characteristic 0 with ≤ 15 vertices. Out of these two are on torus and remaining on Klein
bottle.

5 Summary

From the theorems 4.1 - 4.7, it follows that:

Theorem 5.1 There are at least 35 non-isomorphic DSEMs on the surfaces of Euler characteristic
0 with ≤ 15 vertices. Out of these, 20 are on the torus and remaining 15 are on the Klein bottle.

A tabular form of the results obtained here is presented in the next page.

Table 5: DSEMs of face-size 4 on torus and Klein bottle on ≤ 15 vertices

S.No. Map Type |V | No.ofmaps On Torus On Klein bottle

1. 9 4 T1(3,6)[3
6:33, 42]1,

T2(3,6)[3
6:33, 42]1

K1(3,6)[3
6:33, 42]1,

K2(3,6)[3
6:33, 42]1

[36 : 33, 42]1 12 6 T3(4,8)[3
6:33, 42]1,

T4(4,8)[3
6:33, 42]1,

T5(4,8)[3
6:33, 42]1

K3(4,8)[3
6:33, 42]1,

K4(4,8)[3
6:33, 42]1,

K5(4,8)[3
6:33, 42]1

15 5 T6(5,10)[3
6:33, 42]1,

T7(5,10)[3
6:33, 42]1,

T8(5,10)[3
6:33, 42]1

K6(5,10)[3
6:33, 42]1,

K7(5,10)[3
6:33, 42]1

2. [36 : 33, 42]2 12 3 T1(6,6)[3
6:33, 42]2,

T2(6,6)[3
6:33, 42]2

K1(6,6)[3
6:33, 42]2
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3. [36:32, 4, 3, 4] 14 1 - K1(2,12)[3
6:32, 4, 3, 4]

4. [33.42:32, 4, 3, 4]1 12 1 T1(4,8)[3
3, 42:32, 4, 3, 4]1 -

5. [33, 42:32, 4, 3, 4]2 12 1 - K1(6,6)[3
3, 42:32, 4, 3, 4]2

6. 9 3 T1(3,6)[3
3, 42:44]1,

T2(3,6)[3
3, 42:44]1

K1(3,6)[3
3, 42:44]1

[33, 42 : 44]1 12 3 T3(4,8)[3
3, 42:44]1,

T4(4,8)[3
3, 42:44]1

K2(4,8)(3
3, 42:44)1

15 5 T5(5,10)[3
3, 42:44]1,

T6(5,10)[3
3, 42:44]1,

T7(5,10)[3
3, 42:44]1

K3(5,10)[3
3, 42:44]1,

K4(5,10)[3
3, 42:44]1

7. [33, 42:44]2 12 3 T1(6,6)[3
3, 42:44]2,

T2(6,6)[3
3, 42:44]2

K1(6,6)[3
3, 42:44]2

6 Discussion

In [16], the authors constructed infinite series of semi-equivelar maps on torus and Klein bottle from
equivelar maps by using elementary map operations: truncation and subdivision (these operations
do not effect the symmetry of a map). Here, we present infinite series of the seven type doubly
semi-equivelar maps for torus, one can explore similarly for Klein bottle.

Infinite series of DSEMs of types [36 : 33, 42]1, [3
3, 42 : 44]1, [3

3, 42 : 44]2, [3
3, 42 : 32, 4, 3, 4]2,

[36 : 33, 42] are constructed from infinite series of semi-equivelar map of type [44] by subdividing the
quadrangular faces as shown in the Fig. 6.1, Fig. 6.2, Fig. 6.3, Fig. 6.4 and Fig. 6.5 respectively.
Infinite series of DSEM of type [36 : 32, 4, 3, 4] is obtained from an infinite series of semi-equivelar
map of type [63] by subdividing the hexagonal faces (by introducing a new vertex and joining it to
the six vertices of the face by an edge) as shown in Fig. 6.6.

Although, we present infinite series of DSEM of type [33, 42 : 32, 4, 3, 4], see Fig. 6.7. However
we do not know whether this DSEM can be obtained from any semi-equivelar map by the above
elementary map operations. This observation leads to the following question.

Question 1 Can we obtain every doubly semi-equivelar map (corresponding to the 2-uniform tilings)
on torus and Klein bottle from semi-equivelar maps (corresponding to the Archimedean tilings) by
applying finite sequence of map operations on the same surface.

Infinite series of DSEMs on torus:

. . .. . .. . .

1 2 3 4 n 1

1 2 3 4 n 1

n+1
n+2 n+3

n+4 2n n+1

a1 a2 a3
a4 an a1

Fig. 6.1: DSEM of type-[36: 33, 42]1 : (n ≥ 3)

. . .. . .. . .

1 2 3 4 n 1

1 2 3 4 n 1

a1 a2 a3
a4 an a1

n+1
n+2 n+3

n+4 2n n+1

Fig. 6.2: DSEM of type-[33, 42: 44]1 : (n ≥ 3)
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. . .. . .. . .

1 2 3 4 n 1

a1 a2 a3
a4 an a1

an+1 an+2 an+3
an+4 a2n an+1

n+1
n+2 n+3

n+4 2n n+1

1 2 3 4 n 1

Fig. 6.3: DSEM of type-[33, 42: 44]2 : (n ≥ 3)

. . .. . .. . .

a1 a2 a3 a4 a5 a2n a1

a2n+1
a2n+2

a2n+3

a2n+4 a2n+5 a4n a2n+1

2n+1
2n+2 2n+3

2n+4
2n+5 4n 2n+1

a1 a2 a3 a4 a5 a2n a1

1
2

3

4 5 2n 1

Fig. 6.4: DSEM of type-[33, 42: 32, 4, 3, 4]2 : (n ≥ 2)

1 2 a1 a2 3 4 a3 a4 5 6 2n+1 2n+2 a2n+1 a2n+2 1

2n+3
2n+4

a2n+3 a2n+4 2n+5 2n+6 a2n+5 a2n+6 2n+7
2n+8 4n+3

4n+4

a4n+3 a4n+4
2n+3

4n+5
4n+6

a4n+5 a4n+6 4n+7 4n+8 a4n+7 a4n+8 4n+9
4n+10 6n+5

6n+6

a6n+5 a6n+6
4n+5

1 2 a1 a2 3 4 a3 a4 5 6 1+2n 2+2n a1+2n a2+2n 1

Fig. 6.5: DSEM of type-[36 : 33, 42]2 : (n ≥ 0)

. . .. . .. . .

1 2 4 5 7 8
10

3n-2 3n-1
1

3 6 9 3n

i1

i2

i3

i4 i5

i6

i7 i8

i9

i10 i3n−2 i3n−1

i3n

i1

3n-3 3n 3 6 3n-6 3n-3

3n-2 3n-1 1 2 4 5 3n-5 3n-4

a1 a2 a3 an
· · ·· · ·· · ·

Fig. 6.6: DSEM of type -[36 : 32, 4, 3, 4] : (n ≥ 2)

a1 a2 a3

a3

a4

a2n−3 a2n−2

a2n−1

a2n

a1

i3 i6 i3n−3 i3n

1 2

3

4 5

6

7 3n-5
3n-4

3n-3

3n-2 3n-1

3n

1

3n-2 3n-1

3n

1 2

3

4
3n-8

3n-7

3n-6

3n-5 3n-4

3n-3

3n-2

. . .. . .. . .

Fig. 6.7: DSEM of type-[33, 42 : 32, 4, 3, 4]1: (n ≥ 3)

If we study group structures associated to the maps, we see that DSEMs, obtained here, on
torus are 2-uniform. For example, in case of type [36 : 33, 42]1, we see that the groups:

G1 =< (v1, v3, v5, v4, v2, v6)(u1, u3, u2) >, G2 =< (v1, v2, v5)(v3, v6, v4)(u1, u3, u2), (v1, v3)(v2, v4)
(v5, v6)(u2, u3) >, G3 =< (v1, v2, v7, v5)(v3, v8, v6, v4)(u1, u3, u4, u2), (v1, v4)(v2, v6)(v3, v5)(v7, v8)
(u1, u2)(u3, u4) >, G4 =< (v1, v5, v7, v2) (v3, v4, v6, v8)(u1, u2, u4, u3), (v1, v8)(v2, v6)(v3, v5)(v4, v7)
(u1, u4)(u2, u3) >, G5 =< (v1, v5, v7, v2)(v3, v4, v6, v8)(u1, u2, u4, u3), (v1, v4)(v2, v3)(v5, v6)(v7, v8) >,
G6 =< (v1, v2, v7, v10, v5)(v3, v8, v9, v6, v4)(u1, u3, u5, u4, u2), (v1, v9)(v2, v8)(v3, v7)(v4, v10)(v5, v6)(u1,
u5)(u2, u4) >, G7 =< (v1, v7, v5, v2, v10)(v3, v9, v4, v8, v6)(u1, u5, u2, u3, u4), (v1, v3)(v2, v4)(v5, v8)
(v6, v7)(v9, v10)(u2, u3)(u4, u5) > and G8 =< (v1, v10, v2, v5, v7)(v3, v6, v8, v4, v9)(u1, u4, u3, u2, u5),
(v1, v4)(v2, v3)(v5, v6)(v7, v8)(v9, v10) > act on the maps:

T1(3,6)[3
6 : 33, 42]1, T2(3,6)[3

6 : 33, 42]1, T3(4,8)[3
6 : 33, 42]1, T4(4,8)[3

6 : 33, 42]1, T5(4,8)[3
6 : 33, 42]1,

T6(5,10)[3
6 : 33, 42]1, T7(5,10)[3

6 : 33, 42]1 and T8(5,10)[3
6 : 33, 42]1 respectively, such that under the

action, the maps have two orbits of vertices. Similarly, we can easily find a group for the DSEMs
of types: [36 : 33, 42]2, [33, 42 : 32, 4, 3, 4]1, [33, 42 : 44]1 and [33, 42 : 44]2 on torus, under which
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the maps have two orbits of vertices. However, this fact does not hold for the DSEMs on Klein
bottle. For example, if we let K1(3,6)[3

6 : 33, 42]1, we get no automorphism which sends v1 to v2.
This can be seen as follows: Suppose there is f ∈ Aut(K1(3,6)[3

6 : 33, 42]1) such that f(v1) = v2.
Then considering lk(v1) and lk(v2), we see, either f(v5) = v5 or f(v5) = v1. In the first case when
f(v5) = v5, we get f(u2) = u3, f(u1) = u1, f(v2) = v1, f(v3) = v6, f(v6) = v3 and f(v4) = v4. Now
if we see lk(u1), we get a contradiction of the facts f(u1) = u1 and f(v3) = v6, as v6 6∈ lk(u1). So
f(v5) 6= v5. Similarly, we see that f(v5) 6= v1. Combining these, we see that f(v1) 6= v2. This shows
that K1(3,6)[3

6 : 33, 42]1 is not 2-uniform. This observation leads to ask the following question:

Question 2 Are the doubly semi-equivelar maps (corresponding to the 2-uniform tilings) on torus
2-uniform?

7 Conclusions

In this article, the notion of doubly semi-equivelar maps (DSEMs) has been introduced for the
first time. A methodology has been presented to enumerate doubly semi-equivelar maps on torus
and Klein bottle corresponding to the 2-uniform tilings [36 : 33, 42]1, [3

6 : 33, 42]2, [3
6 : 32, 4, 3, 4],

[33, 42 : 32, 4, 3, 4]1 , [33, 42 : 32, 4, 3, 4]2, [33, 42 : 44]1, [33, 42 : 44]2. The methodology has been
demonstrated to enumerate the DSEMs on at most 15 vertices. The enumeration provides at least
35 non-isomorphic DSEMs on the surfaces of Euler characteristic zero, out of these 20 are on
torus and remaining 15 are on Klein bottle. Further, infinite series of these types DSEMs have
been constructed. We know that a study of maps become more significant when certain symmetry
involves, in view of this, the notion of 2-uniform maps (parallel to the notion of vertex-transitive
maps for equivelar or semi-equivelar maps) has been introduced. During computation, it has been
found that all the maps obtained on torus are 2-uniform, which does not hold in case of DSEMs on
Klein bottle. This motivates us to explore the fact whether all the DSEMs on torus are 2-uniform.
In literature, vertex-transitive maps have been studied extensively. It would be interesting to study
2-uniform maps not only for torus and Klein bottle but also for other close surfaces and to explore
the analog notions of vertex-transitive maps for 2-uniform maps.
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